

Ken Moats

with Stephen Godfrey, Pat Kalyniak, Thomas Gregoire, Travis Martin

Carleton University Ottawa, Ontario, Canada

Canada's Capital University

SUSY 2011 Conference August 30, 2011

Outline The Bestest Little Higgs Model Motivation Scalar Sector Gauge Sector Fermion Sector Heavy Top Quark Production Pair Production **Single Production** Results Conclusions

The Bestest Little Higgs Model

Schmaltz, Stolarski, Thaler (2010), hep-ph/1006.1356v1

- Difficult to generate Higgs quartic coupling that preserves custodial SU(2) symmetry in LH models
- Most LH models predict $\frac{m_T}{m_{W'}} \simeq \frac{m_t}{m_W} \simeq 2$
 - Precision EW physics constrain heavy gauge boson masses $m_{W'} \gtrsim 2-3~{
 m TeV}$
 - Avoiding fine-tuning in the top sector requires $m_T \lesssim 1-2 \text{ TeV}$
- Bestest LH Model generates a custodially symmetric Higgs quartic coupling with relatively light top partners

Collective Quartic Coupling

•
$$SO(6)_A \times SO(6)_B \rightarrow SO(6)$$

$$\Sigma = e^{i\Pi/f} e^{2i\Pi_h/f} e^{i\Pi/f}$$

Global: $SO(6)_A$ $SO(6)_B$

Gauged:

$$SU(2) \times U(1)$$

- 15 scalars:
 - 2 complex Higgs doublets (4 d.o.f. each): h₁, h₂
 - SU(2)₁ triplet: φ

 - Real singlet: σ

$$\Pi_h = rac{i}{\sqrt{2}} \left(egin{array}{cccc} 0_4 & h_1 & h_2 \\ -h_1^T & 0 & 0 \\ -h_2^T & 0 & 0 \end{array}
ight)$$

$$V_{\text{quartic}} = \frac{\lambda_{65}}{2} \left(f \, \sigma - \frac{1}{\sqrt{2}} h_1^T h_2 + \ldots \right)^2 + \frac{\lambda_{56}}{2} \left(f \, \sigma + \frac{1}{\sqrt{2}} h_1^T h_2 + \ldots \right)^2$$

Integrating out σ gives: $V_{\text{quartic}} = \frac{\lambda_{56}\lambda_{65}}{\lambda_{65} + \lambda_{56}} \left(h_1^T h_2\right)^2 = \frac{1}{2}\lambda_0 \left(h_1^T h_2\right)^2$

Scalar Potential and EWSB

• Scalar Potential below $f \sim 1$ TeV:

$$V_{\text{higgs}} = \frac{1}{2} m_1^2 h_1^T h_1 + \frac{1}{2} m_2^2 h_2^T h_2 - B_{\mu} h_1^T h_2 + \frac{\lambda_0}{2} (h_1^T h_2)^2$$

• EWSB: $\tan \beta \equiv \frac{\langle h_{11} \rangle}{\langle h_{21} \rangle} = \frac{m_2}{m_1}$

$$v_{\text{EW}}^2 \equiv \langle h_{11} \rangle^2 + \langle h_{21} \rangle^2 = \frac{1}{\lambda_0} \left(\frac{m_1^2 + m_2^2}{m_1 m_2} \right) (B_\mu - m_1 m_2) \simeq (246 \,\text{GeV})^2$$

• Higgs spectrum below f is a 2HDM

$$M_{h^0,H^0}^2 = \frac{B_{\mu}}{\sin 2\beta} \mp \sqrt{\frac{B_{\mu}^2}{\sin^2 2\beta} - 2\lambda_0 B_{\mu} v^2 \sin 2\beta + \lambda_0^2 v^4 \sin^2 2\beta}$$

$$M_{A^0}^2 = M_{H^{\pm}}^2 = m_1^2 + m_2^2 = \frac{2 B_{\mu}}{\sin 2\beta} - \lambda_0 v^2$$

$$M_{h^0}^2 < M_{A^0}^2 \approx M_{H^{\pm}}^2 < M_{H^0}^2$$

Gauge Sector

Introduce another independent sigma model at a scale F > f

Global:
$$SO(6)_A$$

 $SO(6)_B$ $SU(2)_C$

 $SU(2)_D$

$$\bigcirc \qquad \qquad \bigcirc \qquad \qquad \bigcirc \qquad \\ \langle \Sigma \rangle = 11 \qquad \qquad \bigcirc$$

Gauged: $SU(2)_A$ $U(1)_Y$ $SU(2)_B$ $SU(2)_A$

 $SU(2)_B$

$$\Sigma = e^{i\Pi/f} e^{2i\Pi_h/f} e^{i\Pi/f} - \Delta = e^{2i\Pi_d/F}, \qquad \Pi_d = \chi_a \frac{\tau^a}{2}$$

$$\Delta = e^{2i\Pi_d/F},$$

$$\Pi_d = \chi_a \frac{\tau^a}{2}$$

- Σ breaks SO(6)_A × SO(6)_B to diagonal subgroup at scale f
- Δ breaks SU(2)_C × SU(2)_D to diagonal subgroup at scale F

$$\mathcal{L} = \frac{f^2}{8} \operatorname{tr} \left(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \right) + \frac{F^2}{4} \operatorname{tr} \left(D_{\mu} \Delta^{\dagger} D^{\mu} \Delta \right) \qquad A_i^{(6)} = A_i^a T^a, \qquad A_i^{(2)} = A_i^a \frac{\tau^a}{2}$$

$$A_i^{(6)} = A_i^a T^a$$

$$A_i^{(2)} = A_i^a \frac{\tau^a}{2}$$

$$D\Sigma = \partial \Sigma + ig_A A_1^{(6)} \Sigma - ig_B \Sigma A_2^{(6)}$$

$$D\Sigma = \partial \Sigma + ig_A A_1^{(6)} \Sigma - ig_B \Sigma A_2^{(6)}, \qquad D\Delta = \partial \Delta + ig_A A_1^{(2)} \Delta - ig_B \Delta A_2^{(2)}$$

Gauge Boson Masses

• After EWSB, the gauge boson masses become:

$$M_{\gamma}^2 = 0$$

$$M_Z^2 = \frac{1}{4} \left(g^2 + g'^2 \right) v^2 - \left(g^2 + g'^2 \right) \left(2 + \frac{3f^2}{f^2 + F^2} \left(s_g^2 - c_g^2 \right)^2 \right) \frac{v^4}{48f^2}$$

$$M_W^2 = \frac{1}{4}g^2v^2 - g^2\left(2 + \frac{3f^2}{f^2 + F^2}\left(s_g^2 - c_g^2\right)^2\right)\frac{v^4}{48f^2}$$

$$M_{Z'}^2 = \frac{1}{4} \left(g_A^2 + g_B^2 \right) \left(f^2 + F^2 \right) - \frac{1}{4} g^2 v^2 + \left(2g^2 + \frac{3f^2}{f^2 + F^2} \left(g^2 + g'^2 \right) \left(s_g^2 - c_g^2 \right)^2 \right) \frac{v^4}{48f^2}$$

$$M_{W'}^2 = \frac{1}{4} \left(g_A^2 + g_B^2 \right) \left(f^2 + F^2 \right) - M_W^2$$

- $\rho = 1$ at $O(v^4/f^2)$
- Heavy Gauge Boson masses $\sim F > f$
- We choose $\tan \theta_g = g_A/g_B = 1$

Fermion Sector

• To build Yukawa interactions, Fermions must transform under SO(6)_A or SO(6)_B

SO(6)_A:
$$Q^T = \begin{pmatrix} \frac{1}{\sqrt{2}}(-Q_{a1} - Q_{b2}) & \frac{i}{\sqrt{2}}(Q_{a1} - Q_{b2}) & \frac{1}{\sqrt{2}}(Q_{a2} - Q_{b1}) & \frac{i}{\sqrt{2}}(Q_{a2} + Q_{b1}) & Q_5 & Q_6 \end{pmatrix}$$

$$SO(6)_{B}: \qquad (U^{c})^{T} = \begin{pmatrix} \frac{1}{\sqrt{2}}(-U_{b1}^{c} - U_{a2}^{c}) & \frac{i}{\sqrt{2}}(U_{b1}^{c} - U_{a2}^{c}) & \frac{1}{\sqrt{2}}(U_{b2}^{c} - U_{a1}^{c}) & \frac{i}{\sqrt{2}}(U_{b2}^{c} + U_{a1}^{c}) & U_{5}^{c} & U_{6}^{c} \end{pmatrix}$$

SU(2)_A doublet:
$$Q_a^{\prime T} \rightarrow \frac{1}{\sqrt{2}}(-Q_{a1}^{\prime},iQ_{a1}^{\prime},Q_{a2}^{\prime},iQ_{a2}^{\prime},0,0)$$

$$SU(2)_{B}$$
 singlet: $U_5^{\prime cT} \rightarrow (0, 0, 0, 0, U_5^{\prime c}, 0)$

$$S = diag(1, 1, 1, 1, -1, -1)$$

$$\mathcal{L}_t = y_1 f Q^T S \Sigma S U^c + y_2 f {Q'_a}^T \Sigma U^c + y_3 f Q^T \Sigma {U'_5}^c + \text{ h.c.}$$

Breaks $SO(6)_A & SO(6)_B$

Preserves $SO(6)_B$

Preserves $SO(6)_A$

- All 3 terms collectively break the symmetries protecting the Higgs
 - \therefore Top Yukawa & radiative corrections to V_{higgs} can be generated

Heavy Top Quark Masses

• After EWSB, the fermion masses become (assuming $y_2 \neq y_3$):

$$M_t^2 = y_t^2 v_1^2$$
 where $y_t^2 = \frac{9y_1^2 y_2^2 y_3^2}{(y_1^2 + y_2^2)(y_1^2 + y_3^2)}$

$$M_{T_{au}}^2 = (y_1^2 + y_2^2) f^2 + \frac{9v_1^2 y_1^2 y_2^2 y_3^2}{(y_1^2 + y_2^2)(y_2^2 - y_3^2)}$$

$$M_{T_{ad}}^2 = (y_1^2 + y_2^2) f^2$$

$$M_{T_5}^2 = (y_1^2 + y_3^2) f^2 - \frac{9v_1^2 y_1^2 y_2^2 y_3^2}{(y_1^2 + y_3^2)(y_2^2 - y_3^2)}$$

$$M_{T_6}^2 = M_{T_{b2}}^2 = M_{T_{b5}}^2 = y_1^2 f^2$$

Charge 2/3: T_{au} , T_{b2} , T_5 , T_6

Charge -1/3: T_{ad}

Charge 5/3: T_{b5}

• Heavy Top Masses $\sim f \leq F$, lighter than Heavy Gauge Bosons

$$M_{Z'}^2 = \frac{1}{4} \left(g_A^2 + g_B^2 \right) \left(f^2 + F^2 \right) - \frac{1}{4} g^2 v^2 + \left(2g^2 + \frac{3f^2}{f^2 + F^2} \left(g^2 + g'^2 \right) \left(s_g^2 - c_g^2 \right)^2 \right) \frac{v^4}{48f^2}$$

$$M_{W'}^2 = \frac{1}{4} \left(g_A^2 + g_B^2 \right) \left(f^2 + F^2 \right) - M_W^2$$

Particle Spectrum

• Note: Top partners are relatively light (required to avoid fine-tuning)

Heavy Top Masses - Dependence on Mixing Angles

2.0 2.0

 $\tan \theta_{12} \equiv y_1/y_2$ $\tan \theta_{13} \equiv y_1/y_3$

 $tan\beta = \sqrt{3}$ f = 1 TeV $M_t = 172.0 \text{ GeV}$

Choose $\tan \theta_{13} > \tan \theta_{12}$ so that

• $(\tan\theta_{12}, \tan\theta_{13}) = (0.727, 1.732)$

 $(\tan\theta_{12}, \tan\theta_{13}) = (0.325, 0.577)$

Heavy Top Branching Ratios

$(\tan\theta_{12}, \tan\theta_{13})$	• (0.727, 1.732)	• (0.325, 0.577)
Fermion Masses (GeV)		
M _{Tau}	1,142	1,065
M_{Tad}	1,131	1,056
M_{T5}	731	615
$\mathbf{M}_{\mathrm{T6}} = \mathbf{M}_{\mathrm{Tb2}} = \mathbf{M}_{\mathrm{Tb5}}$	665	326
Dominant T ₅ Decay Modes	$BR(T_5 \to b \ W^+) = 0.480$	$BR(T_5 \rightarrow T_{b2}h) = 0.420$
$(M_h = 120 \text{ GeV})$	$BR(T_5 \to t Z) = 0.225$	$BR(T_5 \to T_{b5} W^-) = 0.269$
	$BR(T_5 \rightarrow t h) = 0.114$	$BR(T_5 \to T_{b2}Z) = 0.131$
		$BR(T_5 \rightarrow T_6 h) = 0.116$

- $\tan \beta = \sqrt{3}$, $M_t = 172.0$ GeV, f = 1 TeV
- Benchmark Point: $(\tan \theta_{12}, \tan \theta_{13}) = (0.727, 1.732)$ for shorter decay chains

Heavy Top Pair Production

- Pair Production occurs via gluon fusion
- Cascade decays lead to many particles in the final state

• Pair Production of charge 5/3 and -1/3 heavy quarks leads to same sign dileptons (Contino, Servant, hep-ph/0801.1679v2)

Heavy Top Single Production

• Single production of charge 2/3 heavy quarks occurs via W exchange between light quark and b-quark partons

• Single production of charge 5/3 and -1/3 quarks occurs in association with a top quark

T₅ Production

Process $(f = 1 \text{ TeV})$	σ (fb), 7 TeV	σ (fb), 14 TeV
Pair Production	11.555	244.98
Single Production	19.670	163.57

BRs for $f = 1$ TeV,		
$(\tan\theta_{12}, \tan\theta_{13}) = (0.727, 1.732)$		
Decay Mode	BR	
$T_5 \rightarrow b W^+$	0.480	
$T_5 \rightarrow t Z$	0.225	
$T_5 \rightarrow t h$	0.114	
$T_5 \rightarrow b H^+$	0.086	
$T_5 \rightarrow t A^0$	0.068	
$T_5 \rightarrow t H^0$	0.018	
$T_5 \rightarrow \text{other}$	0.009	

- σ calculated using MadGraph 5
- BRs calculated using BRIDGE

$$M_h = 120 \text{ GeV}, \quad M_{H^0} = 505 \text{ GeV}$$

 $M_{H^{\pm}} = M_{A^0} = 500 \text{ GeV}$

T₆ Production

BRs for $f = 1$ TeV,		
$(\tan\theta_{12}, \tan\theta_{13}) = (0.727, 1.732)$		
BR		
0.416		
0.207		
0.192		
0.170		
0.015		

Process $(f = 1 \text{ TeV})$	σ (fb), 7 TeV	σ (fb), 14 TeV
Pair Production	23.862	439.82
Single Production	23.481	178.09

T_{b2} Production

BRs for $f = 1$ TeV,		
$(\tan\theta_{12}, \tan\theta_{13}) = (0.727, 1.732)$		
Decay Mode	BR	
$T_{b2} \rightarrow t Z$	0.491	
$T_{b2} \rightarrow b W^+$	0.258	
$T_{b2} \rightarrow t h$	0.217	
$T_{b2} \rightarrow b H^+$	0.012	
$T_{b2} \rightarrow \text{other}$	0.022	

Process $(f = 1 \text{ TeV})$	σ (fb), 7 TeV	σ (fb), 14 TeV
Pair Production	23.982	427.67
Single Production	17.457	131.98

T_{au} Production

Process $(f = 1 \text{ TeV})$	σ (fb), 7 TeV	σ (fb), 14 TeV
Pair Production	0.19434	13.736
Single Production	0.21811	3.2883

BRs for $f = 1$ TeV,		
$(\tan\theta_{12}, \tan\theta_{13}) =$	= (0.727, 1.732)	
Decay Mode	BR	
$T_{au} \rightarrow T_5 Z$	0.334	
$T_{au} \rightarrow T_{b2} Z$	0.118	
$T_{au} \rightarrow T_{b2} h$	0.115	
$T_{au} \rightarrow T_6 Z$	0.086	
$T_{au} \rightarrow T_5 h$	0.084	
$T_{au} \rightarrow T_6 h$	0.083	
$T_{au} \rightarrow t Z$	0.082	
$T_{au} \rightarrow b W^+$	0.058	
$T_{au} \rightarrow T_{b5} W^{-}$	0.015	
$T_{au} \rightarrow other$	0.025	

Could adjust parameters so that T_{au} is lighter and more easily produced

T_{ad} Production (charge -1/3)

BRs for $f = 1$ TeV,		
$(\tan\theta_{12}, \tan\theta_{13}) = (0.727, 1.732)$		
Decay Mode	BR	
$T_{ad} \rightarrow T_5 W^-$	0.631	
$T_{ad} \rightarrow T_6 W^-$	0.164	
$T_{ad} \rightarrow T_{b2} W^{-}$	0.138	
$T_{ad} \rightarrow t W^-$	0.028	
$T_{ad} \rightarrow other$	0.039	

Process $(f = 1 \text{ TeV})$	σ (fb), 7 TeV	σ (fb), 14 TeV
Pair Production	0.21616	14.515
Single Production	0.0072314	0.23632

Could adjust parameters so that T_{ad} is lighter and more easily produced

T_{b5} Production (charge 5/3)

BRs for $f = 1$ TeV,		
$(\tan\theta_{12}, \tan\theta_{13}) = (0.727, 1.732)$		
Decay Mode BR		
0.982		
$T_{b5} \rightarrow \text{other}$ 0.018		

	Process $(f = 1 \text{ TeV})$	σ (fb), 7 TeV	σ (fb), 14 TeV	
	Pair Production	23.977	435.41	
	Single Production	7.8771	100.24	

Conclusions & Future Work

- The Bestest Little Higgs Model generates a custodially symmetric Higgs quartic and avoids fine-tuning in the top sector
- Several top partners that are lighter than heavy gauge bosons, leading to interesting phenomenology in heavy fermion sector
- Production cross sections and branching ratios of heavy top quarks were calculated for a specific parameter set for a 7 TeV and 14 TeV LHC
- Must explore parameter space more fully and determine its effect on production cross sections and branching ratios
- Must simulate heavy top quark decays and consider backgrounds to final states

The Littlest Higgs Model

N. Arkani-Hamed et al. (2002) hep-ph/0206021

• Introduce new interactions at scale $\Lambda = 4\pi f \sim 10$ TeV with new particles at $f \sim 1$ TeV: heavy gauge bosons, heavy scalars, new heavy quarks.

• Quadratic divergences in M_H^2 are cancelled by the contributions of these new particles.

$$\delta M_H^2 = \frac{G_F \Lambda^2}{4\sqrt{2}\pi^2} \left(6M_W^2 + 3M_Z^2 + M_H^2 - 12M_t^2 \right) + \dots$$

• Scalar Sector:

$$h = \begin{pmatrix} h^+ \\ h^0 \end{pmatrix}$$

Doublet

$$\phi = \begin{pmatrix} \phi^{++} & \phi^{+}/\sqrt{2} \\ \phi^{+}/\sqrt{2} & \phi^{0} \end{pmatrix}$$

Triplet

Littlest Higgs with Custodial SU(2)

Chang (2004) hep-ph/0306034v3

- Little Higgs Model with Left-Right Symmetry
- $SO(9) \rightarrow SO(5) \times SO(4) \supset SU(2)_L \times SU(2)_R \times SU(2)_W \times U(1)_Y$
- Scalar Sector:
 - Complex Higgs Doublet: h
 - 3 Real Triplets: ϕ^{ab} (a, b = 1, 2, 3)
 - Real Singlet: φ⁰

$$\langle \Sigma \rangle = \begin{pmatrix} 0 & 0 & 1 & 4 \\ 0 & 1 & 0 \\ 1 & 4 & 0 & 0 \end{pmatrix}$$

$$\Sigma = e^{i\Pi/f} \langle \Sigma \rangle e^{i\Pi^T/f} = e^{2i\Pi/f} \langle \Sigma \rangle$$

$$\Pi = \frac{-i}{4} \begin{pmatrix} 0 & \sqrt{2}\vec{h} & -\Phi \\ -\sqrt{2}\vec{h}^T & 0 & \sqrt{2}\vec{h}^T \\ \Phi & -\sqrt{2}\vec{h} & 0 \end{pmatrix}$$

Littlest Higgs with Custodial SU(2)

Chang (2004) hep-ph/0306034v3

- Begin by constructing a Lagrangian:
- Top Sector:

$$\mathcal{L}_{top} = y_1 f \left(\vec{\mathcal{X}}^{cT} t^c 0_4 \right) \Sigma \begin{pmatrix} 0_5 \\ \vec{q_t} \end{pmatrix} + y_2 f \vec{\mathcal{X}}^T \vec{\mathcal{X}}^c + \text{ h.c.}$$

• Gauge Sector:

$$\mathcal{L}_{kin} = \frac{f^2}{4} \operatorname{Tr} \left[D_{\mu} \Sigma D^{\mu} \Sigma \right]$$

$$D_{\mu}\Sigma = \partial_{\mu}\Sigma + i\left[A_{\mu}, \Sigma\right]$$

Littlest Higgs with Custodial SU(2)

Chang (2004) hep-ph/0306034v3

• Radiative corrections generate a Coleman-Weinberg Potential:

$$V = \lambda_1^- f^2 (\phi^0 - H^0)^2 + \lambda_1^+ f^2 (\phi^0 + H^0)^2 + \lambda_3^- f^2 (\phi^{ab} - H^{ab})^2 + \lambda_3^+ f^2 (\phi^{ab} + H^{ab})^2 + \Delta \lambda_3 f^2 (\phi^{a3} + H^{a3})^2 + \mu^2 h^{\dagger} h$$
where $\Delta \lambda_3 << \lambda_3^{\pm}$

- EWSB occurs when neutral scalars acquire vevs that minimize the potential
- Shift scalar fields by their vevs and determine the interactions of the theory $h \to h + v$ $\phi^0 \to \phi^0 + v_0$ $\phi^{aa} \to \phi^{aa} + v_a$ $(v_1 = v_2 \approx v_3)$
- One can then determine mass eigenstates and calculate Feynman rules

Dangerous Singlet Problem

Schmaltz, Thaler (2009) hep-ph/0812.2477v3

• Collective Quartic:

$$V \sim \lambda_1^- f^2 (\phi^0 - H^0)^2 + \lambda_1^- f^2 (\phi^0 + H^0)^2$$
 where $H^0 = h^{\dagger}h / (4f)$

• Radiative corrections generate operators of the form:

$$-\lambda_1^- f^3 (\phi^0 - H^0 + ...) + \lambda_1^+ f^3 (\phi^0 + H^0 + ...)$$

which preserve the shift symmetries:

$$h \rightarrow h + \varepsilon + \dots$$
 and $\phi^0 \rightarrow \phi^0 \pm (h^{\dagger}\varepsilon + \varepsilon^{\dagger}h)/(4f) + \dots$

- In order to prevent quadratically divergent Higgs mass terms and ϕ^0 tadpoles at the one-loop level, additional symmetries on ϕ^0 are required.
- There is no viable one-Higgs doublet Little Higgs model where a collective quartic involves a real singlet

Fermion Sector

To build Yukawa interactions, Fermions must transform under SO(6)_A or SO(6)_B

$$SO(6)_{A}: Q^{T} = \begin{pmatrix} \frac{1}{\sqrt{2}}(-Q_{a1} - Q_{b2}) & \frac{i}{\sqrt{2}}(Q_{a1} - Q_{b2}) & \frac{1}{\sqrt{2}}(Q_{a2} - Q_{b1}) & \frac{i}{\sqrt{2}}(Q_{a2} + Q_{b1}) & Q_{5} & Q_{6} \end{pmatrix}$$

$$SO(6)_{B}: \quad (U^{c})^{T} = \begin{pmatrix} \frac{1}{\sqrt{2}}(-U_{b1}^{c} - U_{a2}^{c}) & \frac{i}{\sqrt{2}}(U_{b1}^{c} - U_{a2}^{c}) & \frac{1}{\sqrt{2}}(U_{b2}^{c} - U_{a1}^{c}) & \frac{i}{\sqrt{2}}(U_{b2}^{c} + U_{a1}^{c}) & U_{5}^{c} & U_{6}^{c} \end{pmatrix}$$

$$SU(2)_A$$
 doublet: $Q'_a{}^T \rightarrow \frac{1}{\sqrt{2}}(-Q'_{a1}, iQ'_{a1}, Q'_{a2}, iQ'_{a2}, 0, 0)$

SU(2)_B singlet:
$$U_5^{\prime cT} \rightarrow (0, 0, 0, 0, U_5^{\prime c}, 0)$$

$$S = diag(1, 1, 1, 1, -1, -1)$$

Identifying Q_a with SM quark doublet (Y=1/6) requires additional U(1) symmetry

$$T_Y = T_R^3 + T_X$$

	$SO(6)_A$	$SO(6)_B$	$SU(3)_C$	$U(1)_X$
\overline{Q}	6	_	3	2/3
Q'_a	$2^{(*)}$	_	3	2/3
U^c	_	6	$\overline{3}$	-2/3
$U_5^{\prime c}$	_	$1^{(*)}$	$\overline{3}$	-2/3